ΤΑΣΕΙΣ

ΠΑΙΧΝΙΔΙΑ

ΥΛΙΚΟ

ΒΙΝΤΕΟ

2/7/14

Όλοι οι πρώτοι αριθμοί ως το 2500 σε μια κάρτα

2500.PNG

Πρώτοι αριθμοί

Στα μαθηματικά πρώτος αριθμός (ή απλά πρώτος) είναι ένας φυσικός αριθμός μεγαλύτερος της μονάδας με την ιδιότητα οι μόνοι φυσικοί διαιρέτες του να είναι η μονάδα και ο εαυτός του. Ένας φυσικός αριθμός μεγαλύτερος της μονάδας , ο οποίος δεν είναι πρώτος αριθμός ονομάζεται σύνθετος αριθμός. Για παράδειγμα, ο αριθμός 5 είναι πρώτος, επειδή μόνο οι αριθμοί 1 και 5 τον διαιρούν εξίσου, ενώ ο 6 είναι σύνθετος επειδή έχει διαιρέτες τους 2 και 3 εκτός των 1 και 6. Το μηδέν και το ένα δεν είναι πρώτοι αριθμοί. Το μηδέν συχνά δεν θεωρείται καν φυσικός αριθμός.

Η ακολουθία των 25 πρώτων αριθμών είναι η εξής:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, ...
Ο αριθμός 2 είναι ο μόνος άρτιος (ζυγός) πρώτος αριθμός. Όλοι οι άλλοι πρώτοι είναι περιττοί (μονοί).

Το θεμελιώδες θεώρημα της αριθμητικής καθορίζει το βασικό ρόλο των πρώτων αριθμών στη θεωρία αριθμών: κάθε ακέραιος αριθμός μεγαλύτερος του 1 μπορεί να γραφεί ως γινόμενο πρώτων κατά μοναδικό τρόπο. Η μοναδικότητα σε αυτό το θεώρημα προϋποθέτει την εξαίρεση του 1 ως πρώτου αριθμού επειδή ένας πρώτος μπορεί να περιέχει αυθαίρετα πολλές φορές το 1 σε κάθε γινόμενο, για παράδειγμα 3, 1 x 3, 1 x 1 x 3, κ.ο.κ. είναι όλοι παράγοντες του 3.

Μια απλή αλλά αργή μέθοδος για να επαληθευτεί αν ένας δοθείς αριθμός n είναι πρώτος είναι η λεγόμενη δοκιμαστική διαίρεση. Η δοκιμαστική διαίρεση συνίσταται στον έλεγχο αν ο n είναι πολλαπλάσιο κάποιου ακέραιου αριθμού μεταξύ του 2 και του √n. Οι αλγόριθμοι που είναι πολύ πιο αποτελεσματικοί από τη δοκιμαστική διαίρεση έχουν επινοηθεί για να ελέγχουμε αν μεγαλύτεροι αριθμοί είναι πρώτοι. Ιδιαίτερα γρήγορες μέθοδοι είναι διαθέσιμες για αριθμούς ειδικών μορφών, όπως είναι αριθμοί Μερσέν. Ο μεγαλύτερος γνωστός πρώτος αριθμός από τον Ιανουάριο του 2013 έχει 17.425.170 δεκαδικά ψηφία.

Υπάρχουν άπειροι σε πλήθος πρώτοι αριθμοί, όπως απέδειξε ο Ευκλείδης περίπου στο 300 π.Χ. Δεν υπάρχει κανένας γνωστός τύπος ο οποίος να διαχωρίζει όλους τους πρώτους αριθμούς από τους σύνθετους. Ωστόσο, η κατανομή των πρώτων αριθμών, όπως λέμε τη στατιστική συμπεριφορά των πρώτων γενικά, μπορεί να μοντελοποιηθεί. Το πρώτο αποτέλεσμα προς αυτή την κατεύθυνση είναι το θεώρημα πρώτων αριθμών, το οποίο αποδείχτηκε στα τέλη του 19ου αιώνα, το οποίο λέει ότι η πιθανότητα ενός τυχαία επιλεγμένου αριθμού n να είναι πρώτος είναι αντιστρόφως ανάλογη του πλήθους των ψηφίων ή του λογαρίθμου του n.

Οι πρώτοι αριθμοί είναι ένα από τα αντικείμενα της θεωρίας αριθμών και είναι μια πολύ ενεργή ερευνητικά περιοχή των μαθηματικών. Πολλά ερωτήματα γύρω από τους πρώτους αριθμούς παραμένουν ανοιχτά, όπως η εικασία του Ρίμαν, η εικασία του Γκόλντμπαχ, η οποία λέει ότι κάθε άρτιος ακέραιος μεγαλύτερος του 2 μπορεί να γραφεί ως άθροισμα δύο πρώτων και η εικασία των διδύμων πρώτων, η οποία λέει ότι υπάρχουν άπειρα σε πλήθος ζευγάρια πρώτων των οποίων η διαφορά είναι 2. Τέτοιες ερωτήσεις οδήγησαν στην ανάπτυξη διάφορων κλάδων της θεωρίας αριθμών, εστιάζοντας στην αναλυτική ή αλγεβρική πλευρά των αριθμών. Οι πρώτοι χρησιμοποιούνται σε πολλούς τομείς στην τεχνολογία πληροφοριών, όπως στην Κρυπτογράφηση Δημόσιου Κλειδιού, η οποία χρησιμοποιεί ιδιότητες, όπως τη δυσκολία να αναλύεις ένα μεγάλο αριθμό σε γινόμενο πρώτων αριθμών. Οι πρώτοι αριθμοί συμβάλλουν σε διάφορες γενικεύσεις σε άλλους μαθηματικούς τομείς, ιδίως στην άλγεβρα, όπως τα στοιχεία πρώτων και τα ιδανικά πρώτων.

Δημοσίευση σχολίου

ΤΡΟΠΟΙ ΕΠΙΚΟΙΝΩΝΙΑΣ

ΑΡΧΕΙΟ ΑΝΑΡΤΗΣΕΩΝ

ΕΠΙΣΚΕΠΤΕΣ

TRANSLATE THIS SITE

 
Copyright © 2017 ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΔΑΣΚΑΛΙΑ
Powered byBlogger