Νομίζεις ότι είσαι έξυπνος;...Να λοιπόν η ευκαιρία σου να το αποδείξεις!
Σε αυτό το άρθρο παρουσιάζονται 5 δύσκολοι γρίφοι που περιμένουν να τους λύσεις...
Γρίφος 1: Η έξυπνη µέτρηση
Ένας έχει µια νταµιτζάνα κρασί και θέλει να δώσει σε φίλο του 1 λίτρο. Πώς µπορεί να το µετρήσει, χωρίς καθόλου απ’ το κρασί να πάει χαµένο, αν διαθέτει µόνο ένα δοχείο των 5 λίτρων και ένα των 3 λίτρων;
Απάντηση 1 : Πρώτα θα γεµίσει το δοχείο των 3 λίτρων. Μετά θα αδειάσει τα 3 λίτρα στο δοχείο των 5 λίτρων. Πάλι θα γεµίσει το δοχείο των 3 λίτρων και θα αδειάσει απ’ αυτό στο δοχείο των 5 λίτρων τόσο κρασί, ώστε να το γεµίσει. Έτσι θα µείνει στο δοχείο των 3 λίτρων ακριßώς 1 λίτρο.
Γρίφος 2: Η γέφυρα
Στη µέση µιας γέφυρας υπάρχει ένα φυλάκιο. Ο φύλακας ßγαίνει κάθε δέκα λεπτά και καλεί οποιοδήποτε ßρίσκεται πάνω στη γέφυρα να γυρίσει πίσω και αν δεν υπακούσει τον πυροßολεί. Ο χρόνος για να περάσει κανείς τη γέφυρα είναι δεκαπέντε λεπτά. Πώς µπορεί κανείς να περάσει αυτή τη γέφυρα;
Απάντηση 2: Θα προχωρήσει κανονικά πάνω στη γέφυρα, αλλά πριν ßγει ο φύλακας θα αντιστρέψει την πορεία του. Ο φύλακας θα τον γυρίσει πίσω και έτσι θα τον στείλει προς την επιθυμητή κατεύθυνση.
Γρίφος 3: Η λάµπα
Έχουµε ένα δωµάτιο το οποίο έχει µία λάµπα(στο εσωτερικό του)και τρεις διακόπτες (στο εξωτερικό του). Ένας από αυτούς τους διακόπτες είναι αυτός που ανάßει την λάµπα. Εµείς πρέπει µε µία µόνο προσπάθεια να καταλάßουµε ποιος διακόπτης είναι ο σωστός.Δηλαδή ποιο ή ποιους διακόπτες πρέπει να πατήσουµε ώστε όταν ανοίξουµε την πόρτα να καταλάßουµε ποιος είναι ο σωστός;
(Εννοείται ότι όταν είναι κλειστή η πόρτα δεν ßλέπουµε αν ανάßει ή όχι η λάµπα)
(Εννοείται ότι όταν είναι κλειστή η πόρτα δεν ßλέπουµε αν ανάßει ή όχι η λάµπα)
Απάντηση 3: Θα πατήσουµε πρώτα τον πρώτο διακόπτη και θα τον αφήσουµε πατηµένο για λίγα λεπτά. Ύστερα θα τον επαναφέρουµε στην αρχική του κατάσταση (τον πρώτο διακόπτη) και θα πατήσουµε τον δεύτερο διακόπτη. Τότε θα ανοίξουµε την πόρτα και θα πράξουµε ως εξής: Αν η λάµπα καίει πάει να πει ότι ο σωστός διακόπτης είναι ο δεύτερος που είναι και πατηµένος, αν δεν καίει θα πιάσουµε την λάµπα και αν είναι ζεστή πάει να πει ότι ο σωστός διακόπτης είναι ο πρώτος ενώ αν δεν καίει πάει να πει ότι ο σωστός διακόπτης είναι τρίτος.
Γρίφος 4: Το πρόßατο
Σε ένα κλουßί (σχετικά µεγάλο) είναι κλεισµένα 57 λιοντάρια και 1 πρόßατο. Αν κάποιο λιοντάρι φάει το πρόßατο τότε το πιάνει υπνηλία (από τη ßαρυστοµαχιά) και είναι ευάλωτο σε επιθέσεις άλλου λιονταριού (γίνεται κατά κάποιο τρόπο ψευδό-πρόßατο, δηλαδή υποψήφιο θύµα).
Υποθέστε ότι αν κάποιο λιοντάρι σκοτώσει το θύµα του τότε το τρώει µόνο του (δεν το µοιράζεται µε άλλο λιοντάρι). Επίσης υποθέστε ότι όλα τα λιοντάρια είναι λογικά, και όλα ξέρουν ότι και τα άλλα λιοντάρια σκέφτονται µε λογικό τρόπο. Το κάθε λιοντάρι θέλει κατ' αρχάς να ζήσει και αν µπορεί να φάει κάποιο θύµα τότε θα το κάνει. Οι προτεραιότητές τους δηλαδή είναι (από τη µεγαλύτερη προς τη µικρότερη):
1. Να φάνε το υποψήφιο θύµα και να ζήσουν
Υποθέστε ότι αν κάποιο λιοντάρι σκοτώσει το θύµα του τότε το τρώει µόνο του (δεν το µοιράζεται µε άλλο λιοντάρι). Επίσης υποθέστε ότι όλα τα λιοντάρια είναι λογικά, και όλα ξέρουν ότι και τα άλλα λιοντάρια σκέφτονται µε λογικό τρόπο. Το κάθε λιοντάρι θέλει κατ' αρχάς να ζήσει και αν µπορεί να φάει κάποιο θύµα τότε θα το κάνει. Οι προτεραιότητές τους δηλαδή είναι (από τη µεγαλύτερη προς τη µικρότερη):
1. Να φάνε το υποψήφιο θύµα και να ζήσουν
2. Να µην φάνε το υποψήφιο θύµα και να ζήσουν
3. Να φάνε το υποψήφιο θύµα και να πεθάνουν
Τα λιοντάρια µπορούν να επιζήσουν και χωρίς να φάνε το πρόßατο ή το όποιο άλλο υποψήφιο θύµα (δηλαδή, τους παρέχεται τροφή µε άλλο τρόπο). Η ερώτηση είναι: Θα επιßιώσει το πρόßατο;
Απάντηση 4:
1. Αν το λιοντάρι ήταν ένα µόνο, θα έτρωγε ασυζητητί το πρόßατο.
2. Αν ήταν 2, κανένα δεν θα το έτρωγε, διότι αµέσως θα έπεφτε θύµα του άλλου.
3. Αν ήταν 3, κάποιο λιοντάρι θα έτρωγε το πρόßατο, µην έχοντας τίποτα να φοßηθεί από τα υπόλοιπα 2 (ßλέπε περίπτωση 2).
4. Αν ήταν 4, δεν θα έκανε κανένα την αρχή να φάει το πρόßατο, γιατί κάποιο από τα υπόλοιπα 3 θα έτρωγε και τον ίδιο (όπως περίπτωση 3).
5. Τελικά καταλήγουμε ότι αν ο αριθµός των λιονταριών είναι µονός, το πρόßατο θα φαγωθεί.
Γρίφος 5: Οι δύο δίδυµοι
Δύο δίδυµοι παρουσιάζονται στο δικαστήριο. Ο ένας από αυτούς λέει πάντοτε ψέµατα, ενώ ο άλλος πότε ψέµατα και πότε την αλήθεια. Ο ένας δίδυµος, ο Τζων, είχε διαπράξει ένα έγκληµα. (Ο Τζων δεν ήταν κατ' ανάγκη αυτός που έλεγε πάντοτε ψέµατα). "Είσαι ο Τζων;" ρωτάει ο δικαστής τον πρώτο δίδυµο. "Ναι, είµαι" του απαντάει. "Είσαι ο Τζων;" ξαναρωτάει ο δικαστής τον δεύτερο δίδυµο. Εκείνος του απάντησε ή "ναι" ή "όχι" και αµέσως ο δικαστής ßρήκε ποιος ήταν ο Τζων. Ήταν ο πρώτος ή ο δεύτερος δίδυµος;